439 research outputs found

    Boundary states in the Nappi-Witten model

    Full text link
    We investigate D-branes in the Nappi-Witten model. Classically symmetric D-branes are classified by the (twisted) conjugacy classes of the Nappi-Witten group, which specify the geometry of the corresponding D-branes. Quantum description of the D-branes is given by boundary states, and we need one point functions of closed strings to construct the boundary states. We compute the one point functions solving conformal bootstrap constraints, and check that the classical limit of the boundary states reproduces the geometry of D-branes.Comment: 19 pages, no figure; minor changes, references adde

    Kappa symmetric OSp(2|2) WZNW model

    Full text link
    We construct a kappa symmetric WZNW model for the OSp(2|2) supergroup, whose bosonic part is AdS3xS1 space. The field equation gives the chiral current conservation and the right/left factorization is shown after the kappa symmetry is fixed. The right-moving modes contain both bosons and fermions while the left-moving modes contain only bosons.Comment: 18 pages; reference and comments added, version to appear in JHE

    Ingested insecticide to control Aedes aegypti: developing a novel dried attractive toxic sugar bait device for intra-domiciliary control

    No full text
    © 2020 The Author(s). Background: Illnesses transmitted by Aedes aegypti (Linnaeus, 1762) such as dengue, chikungunya and Zika comprise a considerable global burden; mosquito control is the primary public health tool to reduce disease transmission. Current interventions are inadequate and insecticide resistance threatens the effectiveness of these options. Dried attractive bait stations (DABS) are a novel mechanism to deliver insecticide to Ae. aegypti. The DABS are a high-contrast 28 inch2 surface coated with dried sugar-boric acid solution. Aedes aegypti are attracted to DABS by visual cues only, and the dried sugar solution elicits an ingestion response from Ae. aegypti landing on the surface. The study presents the development of the DABS and tests of their impact on Ae. aegypti mortality in the laboratory and a series of semi-field trials. Methods: We conducted multiple series of laboratory and semi-field trials to assess the survivability of Ae. aegypti mosquitoes exposed to the DABS. In the laboratory experiments, we assessed the lethality, the killing mechanism, and the shelf life of the device through controlled experiments. In the semi-field trials, we released laboratory-reared female Ae. aegypti into experimental houses typical of peri-urban tropical communities in South America in three trial series with six replicates each. Laboratory experiments were conducted in Quito, Ecuador, and semi-field experiments were conducted in Machala, Ecuador, an area with abundant wild populations of Ae. aegypti and endemic arboviral transmission. Results: In the laboratory, complete lethality was observed after 48 hours regardless of physiological status of the mosquito. The killing mechanism was determined to be through ingestion, as the boric acid disrupted the gut of the mosquito. In experimental houses, total mosquito mortality was greater in the treatment house for all series of experiments (P \u3c 0.0001). Conclusions: The DABS devices were effective at killing female Ae. aegypti under a variety of laboratory and semi-field conditions. DABS are a promising intervention for interdomiciliary control of Ae. aegypti and arboviral disease prevention.[Figure not available: see fulltext.

    Closed Geodesics on Godel-type Backgrounds

    Full text link
    We consider radial oscillations of supertube probes in the Godel-type background which is U-dual to the compactified pp-wave obtained from the Penrose limit of the NS five-brane near horizon geometry. The supertube probe computation can be carried over directly to a string probe calculation on the U-dual background. The classical equations of motion are solved explicitly. In general, the probe is not restricted to travel unidirectionally through any global time coordinate. In particular, we find geodesics that close.Comment: latex, 15 pages, 1 figure. v3: reference added, clarifications added and some discussions expande

    Analytical solutions of bound timelike geodesic orbits in Kerr spacetime

    Full text link
    We derive the analytical solutions of the bound timelike geodesic orbits in Kerr spacetime. The analytical solutions are expressed in terms of the elliptic integrals using Mino time λ\lambda as the independent variable. Mino time decouples the radial and polar motion of a particle and hence leads to forms more useful to estimate three fundamental frequencies, radial, polar and azimuthal motion, for the bound timelike geodesics in Kerr spacetime. This paper gives the first derivation of the analytical expressions of the fundamental frequencies. This paper also gives the first derivation of the analytical expressions of all coordinates for the bound timelike geodesics using Mino time. These analytical expressions should be useful not only to investigate physical properties of Kerr geodesics but more importantly to applications related to the estimation of gravitational waves from the extreme mass ratio inspirals.Comment: A typo in the first expression in equation 21 was fixe

    Orientifolds in N=2 Liouville Theory and its Mirror

    Full text link
    We consider unoriented strings in the supersymmetric SL(2,R)/U(1) coset, which describes the two-dimensional Euclidean black hole, and its mirror dual N=2 Liouville theory. We analyze the orientifolds of these theories from several complementary points of view: the parity symmetries of the worldsheet actions, descent from known AdS_3 parities, and the modular bootstrap method (in some cases we can also check our results against known constraints coming from the conformal bootstrap method). Our analysis extends previous work on orientifolds in Liouville theory, the AdS_3 and SU(2) WZW models and minimal models. Compared to these cases, we find that the orientifolds of the two dimensional Euclidean black hole exhibit new intriguing features. Our results are relevant for the study of orientifolds in the neighborhood of NS5-branes and for the engineering of four-dimensional chiral gauge theories and gauge theories with SO and Sp gauge groups with suitable configurations of D-branes and orientifolds. As an illustration, we discuss an example related to a configuration of D4-branes and O4-planes in the presence of two parallel fivebranes.Comment: 47 pages, 2 figures; v2 typos fixed, refs added, improved discussion of Hanany-Witten setup

    Orientifolds of type IIA strings on Calabi-Yau manifolds

    Full text link
    We identify type IIA orientifolds that are dual to M-theory compactifications on manifolds with G_2-holonomy. We then discuss the construction of crosscap states in Gepner models. (Based on a talk presented by S.G. at PASCOS 2003 held at the Tata Institute of Fundamental Research, Mumbai during Jan. 3-8, 2003.)Comment: 3 pages, RevTeX, PASCOS '03 tal

    D1-brane with Overcritical Electric Field in AdS3 and S-brane

    Full text link
    We study aspects of Dirichlet S-branes, which are defined as Dirichlet boundary condition on a time like embedding of open strings, in general backgrounds. By applying T-duality along an isometry of the unphysical dS2-branes in NS-NS supported AdS3-background, we find S0-brane. We also study the time dependent tachyon condensation on the unstable Dp-brane and interpret the singular solutions as lower dimensional S(p-1)-brane that couples to real Ramond-Ramond fields while to imaginary NS-NS modes.Comment: 23 pages, JHEP style, V2: minor changes, typos fixe

    Dynamical Characterization and Stabilization of Large Gravity-Tractor Designs

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/76167/1/AIAA-32554-693.pd
    • …
    corecore